5,657 research outputs found

    Registered childcare providers and places in England 2011

    Get PDF

    Nonparametric Conditional Inference for Regression Coefficients with Application to Configural Polysampling

    Get PDF
    We consider inference procedures, conditional on an observed ancillary statistic, for regression coefficients under a linear regression setup where the unknown error distribution is specified nonparametrically. We establish conditional asymptotic normality of the regression coefficient estimators under regularity conditions, and formally justify the approach of plugging in kernel-type density estimators in conditional inference procedures. Simulation results show that the approach yields accurate conditional coverage probabilities when used for constructing confidence intervals. The plug-in approach can be applied in conjunction with configural polysampling to derive robust conditional estimators adaptive to a confrontation of contrasting scenarios. We demonstrate this by investigating the conditional mean squared error of location estimators under various confrontations in a simulation study, which successfully extends configural polysampling to a nonparametric context

    Does the BICEP2 Observation of Cosmological Tensor Modes Imply an Era of Nearly Planckian Energy Densities?

    Get PDF
    BICEP2 observations, interpreted most simply, suggest an era of inflation with energy densities of order (1016 GeV)410^{16}\, {\rm GeV})^4, not far below the Planck density. However, models of TeV gravity with large extra dimensions might allow a very different interpretation involving much more modest energy scales. We discuss the viability of inflation in such models, and conclude that existing scenarios do not provide attractive alternatives to single field inflation in four dimensions. Because the detection of tensor modes strengthens our confidence that inflation occurred, it disfavors models of large extra dimensions, at least for the moment.Comment: 4 pages, v3: version to appear in JHE

    Determination of Nonlinear Genetic Architecture using Compressed Sensing

    Full text link
    We introduce a statistical method that can reconstruct nonlinear genetic models (i.e., including epistasis, or gene-gene interactions) from phenotype-genotype (GWAS) data. The computational and data resource requirements are similar to those necessary for reconstruction of linear genetic models (or identification of gene-trait associations), assuming a condition of generalized sparsity, which limits the total number of gene-gene interactions. An example of a sparse nonlinear model is one in which a typical locus interacts with several or even many others, but only a small subset of all possible interactions exist. It seems plausible that most genetic architectures fall in this category. Our method uses a generalization of compressed sensing (L1-penalized regression) applied to nonlinear functions of the sensing matrix. We give theoretical arguments suggesting that the method is nearly optimal in performance, and demonstrate its effectiveness on broad classes of nonlinear genetic models using both real and simulated human genomes.Comment: 20 pages, 8 figures. arXiv admin note: text overlap with arXiv:1408.342

    Instability of Quantum de Sitter Spacetime

    Get PDF
    Quantized fields (e.g., the graviton itself) in de Sitter (dS) spacetime lead to particle production: specifically, we consider a thermal spectrum resulting from the dS (horizon) temperature. The energy required to excite these particles reduces slightly the rate of expansion and eventually modifies the semiclassical spacetime geometry. The resulting manifold no longer has constant curvature nor time reversal invariance, and back-reaction renders the classical dS background unstable to perturbations. In the case of AdS, there exists a global static vacuum state; in this state there is no particle production and the analogous instability does not arise.Comment: 3 pages, v2: version to appear in JHE

    Iterated smoothed bootstrap confidence intervals for population quantiles

    Get PDF
    This paper investigates the effects of smoothed bootstrap iterations on coverage probabilities of smoothed bootstrap and bootstrap-t confidence intervals for population quantiles, and establishes the optimal kernel bandwidths at various stages of the smoothing procedures. The conventional smoothed bootstrap and bootstrap-t methods have been known to yield one-sided coverage errors of orders O(n^{-1/2}) and o(n^{-2/3}), respectively, for intervals based on the sample quantile of a random sample of size n. We sharpen the latter result to O(n^{-5/6}) with proper choices of bandwidths at the bootstrapping and Studentization steps. We show further that calibration of the nominal coverage level by means of the iterated bootstrap succeeds in reducing the coverage error of the smoothed bootstrap percentile interval to the order O(n^{-2/3}) and that of the smoothed bootstrap-t interval to O(n^{-58/57}), provided that bandwidths are selected of appropriate orders. Simulation results confirm our asymptotic findings, suggesting that the iterated smoothed bootstrap-t method yields the most accurate coverage. On the other hand, the iterated smoothed bootstrap percentile method interval has the advantage of being shorter and more stable than the bootstrap-t intervals.Comment: Published at http://dx.doi.org/10.1214/009053604000000878 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Diamond films from combustion of methyl acetylene and propadiene

    Get PDF
    To date diamond films grown with the combustion technique have used either acetylene or, rarely, ethylene as the fuel. However, there are barriers to large scale commercialization of the combustion technique using either fuel. For example, acetylene is relatively expensive and difficult to handle, while the use of ethylene gives relatively low growth rates. In this letter we propose replacing acetylene with MAPPTM gas, a commercial mixture of methyl acetylene and propadiene in liquefied petroleum gas (primarily propylene). MAPP gas is considerably cheaper, safer, and easier to handle than acetylene. Furthermore, the experiments described here suggest that MAPP gas flames are only slightly less efficient than acetylene flames at converting fuel carbon atoms into diamond
    • …
    corecore